研究发现高基氏体对生命正常运转具有重要作用

台湾大学医学院分子医学研究所李芳仁教授的研究团队日前发表创新论文,首度揭开诱发细胞中内质网(Endoplasmic reticulum,ER)压力会进一步调控高基氏体(Golgi apparatus)的讯息传递及囊泡运输。此新发现将提供研究内质网压力引发相关疾病的硏究新方向。该论文于2016年3月10日刊登于自然科学领域重要国际期刊“美国国家科学院期刊”(Proceedings of the National Academy of Sciences ),并受到国际重视。2235_5349

内质网是细胞内极重要的蛋白质与脂类的合成包装运输起点。在内质网内制造出的蛋白质先被折叠(folding)、加工和修饰,再被运输到高基氏体进行再修饰与分类包装,最后以囊泡运输到细胞膜上或分泌到细胞外,此机制的运作攸关生物的生命能否正常延续。细胞若受到外来环境的压力或内在基因的变异,会导致蛋白质折叠不正常,这些异常蛋白质若累积在内质网内,会形成内质网压力(ER stress),并造成蛋白质折叠不正常反应(unfolded protein response, UPR)上升。过去已有许多文献报导指出很多疾病都和内质网压力有关,例如:阿兹罕默症、帕金森氏症、糖尿病与癌症等。因此,剖析细胞对于蛋白质折叠不正常反应的调控,对于了解细胞生理以及人类疾病具有重大的意义。

李教授实验室长期以单细胞酵母菌(Saccharomyces cerevisiae)为模式生物,专注于研究细胞中囊泡运输的调控机制。过去实验室相关研究已证实小分子GTP水解酶Arl1p在细胞中囊泡运输过程扮演重要角色,且其活化过程需要GTP交换因子Syt1p参与。然而,Syt1p在高基氏体活化Arl1p的过程及分子机制仍不清楚。本篇研究首度提出内质网压力与高基氏体囊泡运输存在重要联结。当细胞累积过多未折叠蛋白质时,压力感受蛋白质Ire1p会被活化,使下游转录因子Hac1p顺利合成并引发基因表现,此讯息传递会进一步使GTP交换因子Syt1p被磷酸化。磷酸化的Syt1p与Arl1p蛋白质的交互作用增强,而可活化Arl1p,并使其下游高基氏体结构蛋白质Imh1p亦被召回高基氏体上。本篇论文揭示了未折叠蛋白质所诱发之内质网压力可以透过讯息传递而影响高基氏体上的蛋白质分布,并进一步调控其囊泡运输。了解高基氏体就未折叠蛋白质累积品质的管控机制及其受内质网压力的影响,将是实验室未来的研究重点。

李教授表示,过去的研究大都着墨于如何调控及缓解各种细胞中内质网内未折叠蛋白质的累积与相关疾病的研究,往往忽略了高基氏体管控的重要。本篇研究首开先河,指出细胞需要透过高基氏体囊泡运输之协助来释放内质网压力,对于内质网压力所引发相关疾病之分子机制提供崭新的研究方向。

本研究工作最重要的执行者博士后研究员许家维博士,计划由行政院科技部支持。

论文链接:http://www.pnas.org/content/early/2016/03/09/1518260113

(据台湾大学)

原创文章,如若转载,请注明出处。

相关文章

  • 小草是如何称霸天下的?

    气孔与保卫细胞 提到植物的气孔(stoma),首先出现在脑海中的,应该是教科书里面那由两个肾脏形保卫细胞(guard cell)所包围起来的气孔吧? 其实这种由肾脏形保卫细胞所形成的气孔,是双子叶植物的专利。禾本科(…

    2017-05-13
  • 返老还童不是梦?

    (翻译:范坤; 编辑: Randy) 最近一项关于小鼠基因治疗的研究显示返老还童的可行性,但科学家认为要在人体上实现可能还需数十年。 皱纹,白发和全身疼痛是人体衰老的标志,我们通常认为衰老是一种必然的自然规律。…

    2016-12-21
  • 中外科学家发现在人成纤维细胞中实现定量神经细胞转分化的方法和作用机制

    2016年4月25日,国际学术期刊《Nature Neuroscience》在线发表了中国科学院生物物理研究所核酸生物学重点实验室薛愿超课题组和付向东课题组的研究成果“Sequential regulatory loops as key gatekeepers for neurona…

    2016-05-07
  • SUMOylation如何维持果蝇精巢干细胞稳态的新功能

    3月24日,国际学术期刊《发育》(Development)在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所赵允研究组的最新研究成果:“SUMO regulates somatic cyst stem cells maintenance and directly ta…

    2016-03-26
  • 科学家揭示昆虫共生细菌传播机制

    生物体内普遍存在共生细菌。这些细菌与各类生物共生,并影响和调控它们的生命活动和生存状态。例如,人体内的细菌细胞数量是人类本身细胞的10倍,绝大部分都是有益细菌,许多是我们身体不可或缺的“器官”,我们的消…

    2016-07-06
  • 研究人员发现畸形儿发生的原因

    近期,中国科学院动物研究所李卫研究组发现自噬在支持细胞中参与外质特化结构的组装,支持细胞中自噬相关基因的缺失会导致畸形精子症的发生。该项研究成果在线发表在2016年3月17日autophagy杂志。 目前,全世界范围…

    2016-03-26