科学家实现分子间相干偶极耦合的实空间直接观察

最近,中国科学技术大学单分子科学团队的董振超研究小组利用纳腔等离激元增强的亚纳米空间分辨的电致发光技术,在国际上首次实现在单分子水平上对分子间偶极耦合的直接成像观察,从实空间上展示了分子间能量转移的相干特征。国际权威学术期刊《自然》杂志于3月31日发表了这项成果。

《自然》杂志的审稿人认为,“这项工作开辟了研究分子间相互作用的新途径”,“对于许多研究领域——从分子间相互作用的基础研究到捕光体系和量子光学等实际应用,都具有广泛的影响和重要的意义”。《自然》在同期发表的“新闻与观点”栏目中以“耦合分子的特写镜头”为题,对这一物理化学领域的重要进展进行了专门介绍和报道。

左图为实验的艺术渲染图。右图为利用亚纳米分辨的光谱成像技术,对锌酞菁染料分子二聚体的各种偶极耦合方式的实空间成像表征
左图为实验的艺术渲染图。右图为利用亚纳米分辨的光谱成像技术,对锌酞菁染料分子二聚体的各种偶极耦合方式的实空间成像表征

分子间的能量转移是维系生命及其演化的重要方式,也是实现化学反应、构造分子功能材料的重要手段。大量的研究表明,分子间的能量转移可以通过分子间的偶极耦合来实现。偶极是表征分子内电荷空间分布的一个物理参量,偶极耦合是分子间库伦相互作用的一种基本形式。直觉上人们通常认为,分子间的能量转移应该是以递进式的非相干传递来实现的,即由接受能量的分子传送给相邻的下一个分子。尽管不断有新的实验数据表明,分子间的高效能量转移可能具有一定的相干性,但由于受空间分辨的局限,对于这种相干性的形式和特性一直缺乏直接的认识。

中国科大单分子科学团队长期致力于发展将扫描隧道显微镜(STM)高分辨静态表征和光学技术高灵敏动态探测相结合的联用系统,特别是通过巧妙调控隧道结纳腔等离激元的宽频、局域与增强特性,极大地丰富了测量和调控手段,拓展了测量极限,为单分子物理化学研究提供了新的机会。近年来,他们在单分子电致发光与拉曼散射方面取得了一系列突破,例如,通过等离激元共振增强实现了分子的反常热荧光和能量上转换电致发光 (Nature Photonics,2010);通过纳腔等离激元双共振调控,实现了亚纳米空间分辨的单分子拉曼光谱成像 (Nature,2013;Nature Nanotechnology,2015)。纳腔等离激元调控和STM操纵技术的精妙结合,也是实现分子间相干偶极耦合的实空间直接观察的关键。通过人工构筑锌酞青染料分子的二聚体结构,他们对不同激子能态的偶极耦合模式分别进行了亚纳米空间分辨的电致荧光成像。他们发现,局域电子的激发能量迅速被整个分子二聚体所共有,构成了一个单激子量子纠缠体系,而且不同的偶极耦合能态的光子成像图案具有类似σ或π成键反键轨道的空间分布特征。这些空间特征不仅反映了分子二聚体的局域光学响应特性,而且还直观地揭示了分子二聚体中各个单体跃迁偶极之间的相干耦合方向和相位信息。

以二聚体纠缠体系获得的认识和规律作为指导,他们还进一步构筑了多分子纠缠的人工分子链结构,并通过研究发光最亮的偶极耦合模式的实空间成像特征,提出了实现可调控的电致“单分子”超辐射荧光的方法。这项研究为深入理解分子体系的相干偶极耦合提供了前所未有的实空间信息,为分子捕光结构的优化以及量子纠缠光源的制备与调控提供了新的思路。

张杨、骆阳、张尧为这篇文章的共同第一作者。该系列研究工作得到了基金委、科技部、中科院、教育部等单位的支持。

论文链接:http://www.nature.com/nature/journal/v531/n7596/full/nature17428.html

(据中国科学技术大学)

原创文章,如若转载,请注明出处。

相关文章

  • 科学家揭示机械敏感离子通道的分子作用机制

    据清华大学,该校药学院肖百龙课题组在《神经元》(Neuron)期刊以长文形式在线发表了题为《机械敏感Piezo通道离子通透和机械力传导机制》的研究论文,首次系统报道了Piezo通道如何感知机械力刺激并控制其离子流通的…

    2016-02-29
  • 研究发现金黄色葡萄球菌WalKR信号传导关键性残基

    金黄色葡萄球菌是一种极具危害的人类病原菌,具有较高的致死率。近年来,耐药性菌株的大规模流行更加剧了治疗的难度。目前,治疗金黄色葡萄球菌感染的常用方法为抗生素治疗。其中一大类抗生素,例如青霉素、万古霉…

    2016-03-25
  • 重复基因表达分化的分子机制

    表达模式是基因的基本属性,了解基因表达模式在进化中的改变及其分子机制是进化生物学研究的重要内容。然而,由于表达模式本身是个非常复杂的概念,前人对其进化分子机制的研究尚不深入,典型的例子并不多见。中国…

    2016-04-19
  • 中国科学家成功构建可逆单分子光电子开关器件

    利用单个分子构建电子器件有希望突破目前半导体器件微小化发展中的瓶颈,其中实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键步骤。在过去20年,分子开关被广泛的研究,但仅有的几…

    2016-06-20